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Note 

Efficient Volume Computation for 
Three- Dimensional Hexahedral Cells* 

Currently, algorithms for computing the volume of hexahedral cells with “ruled” surfaces 
require a minimum of 122 FLOPS (floating point operations) per cell. A new algorithm is 
described which reduces the operation count to 57 FLOPS per cell. D 1988 Academic PWSS, I~C. 

INTRODUCTION 

Many three-dimensional codes are based on meshes whose cells are topologically 
equivalent to hexahedrons or “bricks.” The cells are defined by eight vertices. The 
twelve cell edges are straight line segments. However, the six cell faces are not plane 
in general, and there are many choices possible for specifying the surface. 

A popular choice [l-3] is based on a trilinear mapping between physical 
{x7 Y, z > space and logical { 5, v, i > s p ace, as illustrated in Fig. 1. Using the vertex 
numbering convention shown in the figure, this mapping is expressed as 

(1) 

where ri = {xi, yi, zi}, are the physical coordinates of vertex i, and ((, q, [} are 
logical space coordinates such that 0 6 5, q, [ 6 1. For a typical cell face, such as 
that given by [ = 0, this reduces to 

(2) 

This is a bilinear mapping of the surface to the 5, q plane, which amounts to delin- 
ing a unique “ruled” surface among the four defining vertex points. In finite element 
terminology, this is the geometry obtained from the use of a linear isoparametric 
conforming element. 

The computation of the volume of a cell is fundamental for any code employing 
such a mesh. Further, some hydrodynamics codes compute the volume swept out 
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FIG. 1. Relationship of a computational cell in physical {x. y, z} space to the unit cube in logical 
{ 5, rl, i) space. 

by a cell face during a time step. Such volumes are topologically equivalent to the 
cell volume, and they may be computed using the same algorithm. 

The standard computation of the volume involves the straightforward evaluation 
of the integral 

for each cell. The operation count for this type of algorithm is a minimum of 122 
FLOPS per cell [3-51. 

THE NEW ALGORITHM 

We make use of the identity V . r = 3 and the divergence theorem to write the cell 
volume as 

Y=fiJ^r.ndA, 

where n is the unit outward normal vector, and the integration takes place over the 
surface of the cell. We have thus converted the computation of cell volume to a 
summation of contributions from cell faces. Since each cell face is shared by two 
cells, the primary saving of the new algorithm comes from the double use of each 
cell face contribution. This step is general and is useful for the computation of the 
volume of arbitrary cells. 

Let us consider the bottom face ([ = 0) of the cell in Fig. 1 as typical. The unit 
normal will point in the negative i-direction; therefore 
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Substituting (2) and (5) into (4), and evaluating the resulting surface integral, we 
obtain the fundamental expression for the contribution of this face as 

S 1234=i% Crl ‘b4 xr3)+r2 ‘bl xr4)+r3 ‘b2 xrl)+r4 ‘@3 xr2)l. (6) 

Notice that this is cyclically symmetric with respect to the four vertex points. It is 
not in the most useful form for computation, however. Equation (6) can be rewrit- 
ten in a great many alternative forms. The most useful are 

S 1234 = ii b2 + r3). [h + r2) ’ b3 + r4)lT 

= ii (rl + r4). C(r3 + r4) x (fl + r2)ly 
= A (rl + r2). C(rl + r4) x (r2 + r,)l, 
= A (r3 + r4). C(r2 + r3) x (rl + r4)lT 

or any of the cyclic permutations obtained by use of the identity 

a. (b x c) = c . (a x b) = b. (c x a). 

(7) 

Examination of Eqs. (7) should make it clear how to form the corresponding 
expressions for any face, with due regard for the appropriate sense of the surface 
normal. 

The computation of the cell volume may be organized into three steps: 

(a) compute and store the vector sums of the two vertices of each cell edge 
(9 FLOPS per cell), 

(b) compute and store the vector dot-cross product of Eq. (7) for each cell 
face (42 FLOPS per cell), 

(c) sum the contributions of the six faces for each cell and divide by 12 
(6 FLOPS per cell). 

The resulting operation count is 57 FLOPS per cell. The above algorithm assumes 
the availability of sufficient temporary working storage. 

The situation is somewhat different for computing the volumes swept out by cell 
faces since these volumes do not form a three-dimensional mesh. They do, however, 
form two-dimensional meshes in the planes associated with integer values of the 
logical coordinates. Therefore, approximately two-thirds of the savings of the new 
algorithm are retained. Further, since one face of such a volume is the same as the 
original cell face, and if the contribution of this face had been saved, then essentially 
all the saving of the new algorithm may be obtained. 
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